nextTick实现原理
js
import { noop } from 'shared/util'
import { handleError } from './error'
import { isIE, isIOS, isNative } from './env'
// 上面三行与核心代码关系不大,了解即可
// noop 表示一个无操作空函数,用作函数默认值,防止传入 undefined 导致报错
// handleError 错误处理函数
// isIE, isIOS, isNative 环境判断函数,
// isNative 判断某个属性或方法是否原生支持,如果不支持或通过第三方实现支持都会返回 false
export let isUsingMicroTask = false // 标记 nextTick 最终是否以微任务执行
const callbacks = [] // 存放调用 nextTick 时传入的回调函数
let pending = false // 标记是否已经向任务队列中添加了一个任务,如果已经添加了就不能再添加了
// 当向任务队列中添加了任务时,将 pending 置为 true,当任务被执行时将 pending 置为 false
//
// 声明 nextTick 函数,接收一个回调函数和一个执行上下文作为参数
// 回调的 this 自动绑定到调用它的实例上
export function nextTick(cb?: Function, ctx?: Object) {
let _resolve
// 将传入的回调函数存放到数组中,后面会遍历执行其中的回调
callbacks.push(() => {
if (cb) { // 对传入的回调进行 try catch 错误捕获
try {
cb.call(ctx)
} catch (e) { // 进行统一的错误处理
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
// 如果当前没有在 pending 的回调,
// 就执行 timeFunc 函数选择当前环境优先支持的异步方法
if (!pending) {
pending = true
timerFunc()
}
// 如果没有传入回调,并且当前环境支持 promise,就返回一个 promise
// 在返回的这个 promise.then 中 DOM 已经更新好了,
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}
// 判断当前环境优先支持的异步方法,优先选择微任务
// 优先级:Promise---> MutationObserver---> setImmediate---> setTimeout
// setTimeout 可能产生一个 4ms 的延迟,而 setImmediate 会在主线程执行完后立刻执行
// setImmediate 在 IE10 和 node 中支持
// 当在同一轮事件循环中多次调用 nextTick 时 ,timerFunc 只会执行一次
let timerFunc
// 判断当前环境是否原生支持 promise
if (typeof Promise !== 'undefined' && isNative(Promise)) { // 支持 promise
const p = Promise.resolve()
timerFunc = () => {
// 用 promise.then 把 flushCallbacks 函数包裹成一个异步微任务
p.then(flushCallbacks)
if (isIOS) setTimeout(noop)
// 这里的 setTimeout 是用来强制刷新微任务队列的
// 因为在 ios 下 promise.then 后面没有宏任务的话,微任务队列不会刷新
}
// 标记当前 nextTick 使用的微任务
isUsingMicroTask = true
// 如果不支持 promise,就判断是否支持 MutationObserver
// 不是IE环境,并且原生支持 MutationObserver,那也是一个微任务
} else if (!isIE && typeof MutationObserver !== 'undefined' && (
isNative(MutationObserver) ||
MutationObserver.toString() === '[object MutationObserverConstructor]'
)) {
let counter = 1
// new 一个 MutationObserver 类
const observer = new MutationObserver(flushCallbacks)
// 创建一个文本节点
const textNode = document.createTextNode(String(counter))
// 监听这个文本节点,当数据发生变化就执行 flushCallbacks
observer.observe(textNode, { characterData: true })
timerFunc = () => {
counter = (counter + 1) % 2
textNode.data = String(counter) // 数据更新
}
isUsingMicroTask = true // 标记当前 nextTick 使用的微任务
// 判断当前环境是否原生支持 setImmediate
} else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) {
timerFunc = () => { setImmediate(flushCallbacks) }
} else {
// 以上三种都不支持就选择 setTimeout
timerFunc = () => { setTimeout(flushCallbacks, 0) }
}
// 如果多次调用 nextTick,会依次执行上面的方法,将 nextTick 的回调放在 callbacks 数组中
// 最后通过 flushCallbacks 函数遍历 callbacks 数组的拷贝并执行其中的回调
function flushCallbacks() {
pending = false
const copies = callbacks.slice(0) // 拷贝一份 callbacks
callbacks.length = 0 // 清空 callbacks
for (let i = 0; i < copies.length; i++) { // 遍历执行传入的回调
copies[i]()
}
}
// 为什么要拷贝一份 callbacks
// 用 callbacks.slice(0) 将 callbacks 拷贝出来一份,
// 是因为考虑到在 nextTick 回调中可能还会调用 nextTick 的情况,
// 如果在 nextTick 回调中又调用了一次 nextTick,则又会向 callbacks 中添加回调,
// 而 nextTick 回调中的 nextTick 应该放在下一轮执行,
// 否则就可能出现一直循环的情况,
// 所以需要将 callbacks 复制一份出来然后清空,再遍历备份列表执行回调
import { noop } from 'shared/util'
import { handleError } from './error'
import { isIE, isIOS, isNative } from './env'
// 上面三行与核心代码关系不大,了解即可
// noop 表示一个无操作空函数,用作函数默认值,防止传入 undefined 导致报错
// handleError 错误处理函数
// isIE, isIOS, isNative 环境判断函数,
// isNative 判断某个属性或方法是否原生支持,如果不支持或通过第三方实现支持都会返回 false
export let isUsingMicroTask = false // 标记 nextTick 最终是否以微任务执行
const callbacks = [] // 存放调用 nextTick 时传入的回调函数
let pending = false // 标记是否已经向任务队列中添加了一个任务,如果已经添加了就不能再添加了
// 当向任务队列中添加了任务时,将 pending 置为 true,当任务被执行时将 pending 置为 false
//
// 声明 nextTick 函数,接收一个回调函数和一个执行上下文作为参数
// 回调的 this 自动绑定到调用它的实例上
export function nextTick(cb?: Function, ctx?: Object) {
let _resolve
// 将传入的回调函数存放到数组中,后面会遍历执行其中的回调
callbacks.push(() => {
if (cb) { // 对传入的回调进行 try catch 错误捕获
try {
cb.call(ctx)
} catch (e) { // 进行统一的错误处理
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
// 如果当前没有在 pending 的回调,
// 就执行 timeFunc 函数选择当前环境优先支持的异步方法
if (!pending) {
pending = true
timerFunc()
}
// 如果没有传入回调,并且当前环境支持 promise,就返回一个 promise
// 在返回的这个 promise.then 中 DOM 已经更新好了,
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}
// 判断当前环境优先支持的异步方法,优先选择微任务
// 优先级:Promise---> MutationObserver---> setImmediate---> setTimeout
// setTimeout 可能产生一个 4ms 的延迟,而 setImmediate 会在主线程执行完后立刻执行
// setImmediate 在 IE10 和 node 中支持
// 当在同一轮事件循环中多次调用 nextTick 时 ,timerFunc 只会执行一次
let timerFunc
// 判断当前环境是否原生支持 promise
if (typeof Promise !== 'undefined' && isNative(Promise)) { // 支持 promise
const p = Promise.resolve()
timerFunc = () => {
// 用 promise.then 把 flushCallbacks 函数包裹成一个异步微任务
p.then(flushCallbacks)
if (isIOS) setTimeout(noop)
// 这里的 setTimeout 是用来强制刷新微任务队列的
// 因为在 ios 下 promise.then 后面没有宏任务的话,微任务队列不会刷新
}
// 标记当前 nextTick 使用的微任务
isUsingMicroTask = true
// 如果不支持 promise,就判断是否支持 MutationObserver
// 不是IE环境,并且原生支持 MutationObserver,那也是一个微任务
} else if (!isIE && typeof MutationObserver !== 'undefined' && (
isNative(MutationObserver) ||
MutationObserver.toString() === '[object MutationObserverConstructor]'
)) {
let counter = 1
// new 一个 MutationObserver 类
const observer = new MutationObserver(flushCallbacks)
// 创建一个文本节点
const textNode = document.createTextNode(String(counter))
// 监听这个文本节点,当数据发生变化就执行 flushCallbacks
observer.observe(textNode, { characterData: true })
timerFunc = () => {
counter = (counter + 1) % 2
textNode.data = String(counter) // 数据更新
}
isUsingMicroTask = true // 标记当前 nextTick 使用的微任务
// 判断当前环境是否原生支持 setImmediate
} else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) {
timerFunc = () => { setImmediate(flushCallbacks) }
} else {
// 以上三种都不支持就选择 setTimeout
timerFunc = () => { setTimeout(flushCallbacks, 0) }
}
// 如果多次调用 nextTick,会依次执行上面的方法,将 nextTick 的回调放在 callbacks 数组中
// 最后通过 flushCallbacks 函数遍历 callbacks 数组的拷贝并执行其中的回调
function flushCallbacks() {
pending = false
const copies = callbacks.slice(0) // 拷贝一份 callbacks
callbacks.length = 0 // 清空 callbacks
for (let i = 0; i < copies.length; i++) { // 遍历执行传入的回调
copies[i]()
}
}
// 为什么要拷贝一份 callbacks
// 用 callbacks.slice(0) 将 callbacks 拷贝出来一份,
// 是因为考虑到在 nextTick 回调中可能还会调用 nextTick 的情况,
// 如果在 nextTick 回调中又调用了一次 nextTick,则又会向 callbacks 中添加回调,
// 而 nextTick 回调中的 nextTick 应该放在下一轮执行,
// 否则就可能出现一直循环的情况,
// 所以需要将 callbacks 复制一份出来然后清空,再遍历备份列表执行回调
vue3中computed的实现
1,首先实现computed函数
ts
export const isFunction = (val: unknown): val is Function =>
typeof val === 'function'
// 创建计算属性ref
export function computed<T>(
getterOrOptions: ComputedGetter<T> | WritableComputedOptions<T>,
debugOptions?: DebuggerOptions
) {
let getter: ComputedGetter<T>
let setter: ComputedSetter<T>
// 是否只有getter
const onlyGetter = isFunction(getterOrOptions)
if (onlyGetter) {
getter = getterOrOptions
// 如果只有getter,在开发环境下吧setter换成警告
setter = __DEV__
? () => {
console.warn('Write operation failed: computed value is readonly')
}
: NOOP
} else {
getter = getterOrOptions.get
setter = getterOrOptions.set
}
// 传入 getter、setter、是否有setter 创建computed对象
const cRef = new ComputedRefImpl(getter, setter, onlyGetter || !setter)
// 如果是开发环境在effect对象注入传入的收集和触发钩子
if (__DEV__ && debugOptions) {
cRef.effect.onTrack = debugOptions.onTrack
cRef.effect.onTrigger = debugOptions.onTrigger
}
return cRef as any
}
export const isFunction = (val: unknown): val is Function =>
typeof val === 'function'
// 创建计算属性ref
export function computed<T>(
getterOrOptions: ComputedGetter<T> | WritableComputedOptions<T>,
debugOptions?: DebuggerOptions
) {
let getter: ComputedGetter<T>
let setter: ComputedSetter<T>
// 是否只有getter
const onlyGetter = isFunction(getterOrOptions)
if (onlyGetter) {
getter = getterOrOptions
// 如果只有getter,在开发环境下吧setter换成警告
setter = __DEV__
? () => {
console.warn('Write operation failed: computed value is readonly')
}
: NOOP
} else {
getter = getterOrOptions.get
setter = getterOrOptions.set
}
// 传入 getter、setter、是否有setter 创建computed对象
const cRef = new ComputedRefImpl(getter, setter, onlyGetter || !setter)
// 如果是开发环境在effect对象注入传入的收集和触发钩子
if (__DEV__ && debugOptions) {
cRef.effect.onTrack = debugOptions.onTrack
cRef.effect.onTrigger = debugOptions.onTrigger
}
return cRef as any
}
2,定义ComputedRefImpl实现类
ts
// Computed对象
class ComputedRefImpl<T> {
// 引用了当前computed的effect的Set
public dep?: Dep = undefined
// 放置缓存值
private _value!: T
// 当前值是否是脏数据,(当前值需要更新)
private _dirty = true
// 放置effect对象
public readonly effect: ReactiveEffect<T>
// ref标识
public readonly __v_isRef = true
// isReadonly标识
public readonly [ReactiveFlags.IS_READONLY]: boolean
constructor(
getter: ComputedGetter<T>,
private readonly _setter: ComputedSetter<T>,
isReadonly: boolean
) {
// 创建effect对象,将当前getter当做监听函数,并附加调度器
this.effect = new ReactiveEffect(getter, () => {
// 如果当前不是脏数据
if (!this._dirty) {
// 当前为脏数据
this._dirty = true
// 触发更改
triggerRefValue(this)
}
})
// 根据传入是否有setter函数来决定是否只读
this[ReactiveFlags.IS_READONLY] = isReadonly
}
get value() {
// readonly(computed),获取时this就是readonly,无法修改属性, 所以要先获取原始对象
const self = toRaw(this)
// 收集依赖
trackRefValue(self)
// 如果当前是脏数据(没更新)
if (self._dirty) {
// 更改为不是脏数据
self._dirty = false
// 执行收集函数,更新缓存
self._value = self.effect.run()!
}
// 如果不是脏数据则直接获取缓存值
return self._value
}
set value(newValue: T) {
this._setter(newValue)
}
}
// Computed对象
class ComputedRefImpl<T> {
// 引用了当前computed的effect的Set
public dep?: Dep = undefined
// 放置缓存值
private _value!: T
// 当前值是否是脏数据,(当前值需要更新)
private _dirty = true
// 放置effect对象
public readonly effect: ReactiveEffect<T>
// ref标识
public readonly __v_isRef = true
// isReadonly标识
public readonly [ReactiveFlags.IS_READONLY]: boolean
constructor(
getter: ComputedGetter<T>,
private readonly _setter: ComputedSetter<T>,
isReadonly: boolean
) {
// 创建effect对象,将当前getter当做监听函数,并附加调度器
this.effect = new ReactiveEffect(getter, () => {
// 如果当前不是脏数据
if (!this._dirty) {
// 当前为脏数据
this._dirty = true
// 触发更改
triggerRefValue(this)
}
})
// 根据传入是否有setter函数来决定是否只读
this[ReactiveFlags.IS_READONLY] = isReadonly
}
get value() {
// readonly(computed),获取时this就是readonly,无法修改属性, 所以要先获取原始对象
const self = toRaw(this)
// 收集依赖
trackRefValue(self)
// 如果当前是脏数据(没更新)
if (self._dirty) {
// 更改为不是脏数据
self._dirty = false
// 执行收集函数,更新缓存
self._value = self.effect.run()!
}
// 如果不是脏数据则直接获取缓存值
return self._value
}
set value(newValue: T) {
this._setter(newValue)
}
}